Sprint Force-Velocity profile and Hamstring Injuries

Idan Harat, M.Sc.

Based on Dr. JB Morin 2017 workshop

About Me...

- Sport and Exercise Science תואר שני
 - תואר ראשון במדעי ההתנהגות
 - 2004 מאמן כושר מ
 - מאמן ספורט תחרותי מ-2013 •
- מאמן יכולות גופניות באקדמיה לכדורסל בנות
- מדען ספורט/פיזיולוג מאמץ במכון וינגייט
 - מרצה בביה"ס למאמנים
 - ... לא פיזיותרפיסט...

- JB Morin's lecture
- Five years of Hamstring Injury Research in 25 minutes | Dr David Opar
- https://www.youtube.com/watch?v=EijDF2Bl14A

No conflict of interest

Strength

Performance

Hamstring's Role in Performance

- Sprinting
- Gait cycle
- Eccentric portion of decelerating the tibia – Terminal swing phase
 - Greater forces when >60% max speed

Figure 1. EMG Analysis and the Phases of Sprinting. Adapted from Weimann and Tidow (1995)

Non-Contact HSI

Common

Of all injuries in team sports

12-16%

Persistent

Increase each year in soccer

4%

Mechanics

Occur at high-speed sprinting

61-68%

Anatomy

Of injuries are in the Biceps Femoris long head

80%

Reoccurring

Chances of reinjury

30%

Atrophy

Apparent atrophy and scar tissue even after 3 years

3 yr

Non-Contact HSI

- Reduces hamstring strength (Manier et al., 2016)
 - Mostly in end-range, not just peak torque
 - Muscle inhibition
- Weaker hamstrings is related to increased rates of injury
 - Low H\Q ratio\imbalance (weak relationship)
 - Nordic curl strength (Opar et al., 2015; Bourne et al., 2015; Timmins et al., 2016)
 - Nordic interventions reduce injury rates (~60%)

A comprehensive strength testing protocol offers no clinical value in predicting risk of hamstring injury: a prospective cohort study of 413 professional football players 2017

Nicol van Dyk, ^{1,2} Roald Bahr, ^{3,4} Angus F Burnett, ³ Rod Whiteley, ¹ Arnhild Bakken, ^{3,4} Andrea Mosler, ^{1,5} Abdulaziz Farooq, ³ Erik Witvrouw²

Strength Imbalances and Prevention of Hamstring Injury in Professional Soccer Players

A Prospective Study 2008

Jean-Louis Croisier,*[†] PhD, PT, Sebastien Ganteaume,[†] PT, Johnny Binet,[†] PT, Marc Genty,[‡] MD, and Jean-Marcel Ferret,[§] MD From the [†]Department of Motricity Sciences and Rehabilitation, University and CHU of Liege, Belgium, the [‡]Clinique Valmont Genolier, Glion, Switzerland, and the [§]Center of Sports Medicine, Lyon-Gerland, France

TABLE 2 Hamstring Injury Frequency in Professional Soccer Players

Group	Players, n $(n = 462)$	Injuries, n (n = 35)	Injury Frequency, %
A^a B^b	246	10	4.1
C^c	91 55	$\frac{15}{6}$	16.5
D^d	70	4	5 <mark>.</mark> 7

^aGroup A had no preseason strength imbalance.

^bGroup B had preseason strength imbalances but no subsequent specific compensating training.

^cGroup C had preseason strength imbalances and subsequent compensating training, but no isokinetic control test aimed at verifying the parameter normalization.

^dGroup D had preseason strength imbalances and a subsequent compensating training until the parameter normalization was proved by repeated isokinetic control tests.

Original article

A prospective cohort study of hamstring injuries in competitive sprinters: preseason muscle imbalance as a possible risk factor

S S Yeung, A M Y Suen, E W Yeung 2009

CONCLUSION

This is a 12-month prospective study undertaken to identify the incidence and the risk factors of hamstring injury in competitive sprinters. The results showed that a preseason hamstring: quadriceps muscle peak torque ratio at 180°/s of less than 0.6 increased the risk of hamstring muscle injury by 17 times. A preseason isokinetic screening will be useful to identify athletes at risk. Any athletes with a strength imbalance could undergo a strengthening programme to decrease the risk of hamstring injury.

X 17 times

(Timmins et al., 2016)

Strength

Performance

Hamstring and Sprint Performance

- Hip extensors activity increases with speed
- At high speeds elite runners produce greater proportion of HZ force
- HZ ground reaction force is key in acceleration and top speed
- High HZ force was related to high hip extensors force in isokinetic testing
- Glute in CON and HAM in ECC (end of swing phase; 8 x BW forces on HAM)

Figure 1. EMG Analysis and the Phases of Sprinting. Adapted from Weimann and Tidow (1995)

Hamstring Strength

Strength

Performance

Force-Velocity Sprinting Profile

Are you stronger or faster?

Acceleration, Top speed HZ GRF

Or: WHAT makes you fast?

Concentric Force - Velocity Curve

F-V profile

- Are you better at strength or speed?
- Strength = acceleration, HZ GRF
- Speed = top speed
- Two athletes can perform similarly but be very different so training should be different
- The end result (total time) does not tell the whole story
- F-V profile allows us to design our training better (right amount of work can help in prevention)
- Can also help in recovery and RTP decision
 - Still not enough scientific support

Force production after HAM injury

- Strength and Power reduced but not top speed (after RTP approved)
 - Acceleration impaired
 - Players are cleared to RTP with low F0 and low Pmax
- 2 months later returned to normal values (no pre-injury data)
 - Greater risk of re-injury during those 2 months while F0 was low?

Performance and Prevention: Win-Win

- Hamstring strengthening:
 - Reduce injuries
 - Improve performance?
- F-V profile:
 - To individualize training
 - Screen subjects in RTP?
 - Pilot data suggests that it might
- Injury is multifactorial!

HOW?

- Calculate HZ force from speed
 - Validated against force plates (2-5% difference)
- Calculate FVP from 30 m sprint, if you have 5 splits
- Mysprint app
 - Validated against radar and timing gates
 - Tutorial 1
 - Tutorial 2
- Excel worksheet

FORCE-VELOCITY-POWER Profile of Usain Bolt's World Record

Université Nice Soph<mark>ia</mark> Antipolis Jean-Benoit Morin, PhD University of Nice

The magnitude of the slope (F_0/V_0) describes the Force-Velocity profile of the athlete

	Distance (m)	Time (s)	Position model (s)	Square Difference s
Vmax (m/s)	5	1.501	4.8	0.0
7.35310507	10	2.409	10.2	0.0
Tau (s)	15	3.142	15.0	0.0
1.18015564	20	3.852	20.0	0.0
Stature (m)	25	4.548	24.9	0.0
1.78	30	5.249	30.0	0.0
Mass (kg)				Sum
70				0.1
T° (°C) 20				
P (hPa)	F0 (N/kg)	V0 (m/s)	Pmax (W/kg)	FV Slope
1000	6.15	7.68	11.81	-0.8
	RF max (%)	Drf (%)	Vopt (m/s)	Max Speed (m/s)
	38%	-7.62%	3.84	7.27

- The HAM play a role in sprinting and are often injured (and re-injured)
- Strength seems to be related to HAM injury
 - But remember that injury is multifactorial!
- Injury reduces strength
- FV profile can assist in optimizing training and RTP decision
- FV profile can be assessed with the MySprint app using a 30 m sprint
- There is still much to learn...

Summary

Thank you!

Idan Harat, M.Sc.

idanharat@hotmail.com

